SIMILARITY SEARCH The Metric Space Approach

Pavel Zezula, Giuseppe Amato,
Vlastislav Dohnal, Michal Batko

Table of Contents

Part I: Metric searching in a nutshell

- Foundations of metric space searching
- Survey of existing approaches

Part II: Metric searching in large collections

- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes

Survey of existing approaches

1. ball partitioning methods
2. generalized hyper-plane partitioning approaches
3. exploiting pre-computed distances
4. hybrid indexing approaches
5. approximated techniques

Survey of existing approaches

1. ball partitioning methods
2. Burkhard-Keller Tree
3. Fixed Queries Tree
4. Fixed Queries Array
5. Vantage Point Tree
6. Multi-Way Vantage Point Tree
7. Excluded Middle Vantage Point Forest
8.
9. exploiting pre-computed distances
10. hybrid indexing approaches
11. approximated techniques

Burkhard-Keller Tree (BKT) [BK73]

- Applicable to discrete distance functions only
- Recursively divides a given dataset X
- Choose an arbitrary point $p_{j} \in X$, form subsets:

$$
X_{i}=\left\{o \in X, d\left(o, p_{j}\right)=i\right\} \quad \text { for each distance } i \geq 0
$$

- For each X_{i} create a sub-tree of p_{j}
- empty subsets are ignored

BKT: Range Query

Given a query $R(q, r)$:

- traverse the tree starting from root
- in each internal node p_{j}, do:
- report p_{j} on output
- enter a child i
if $d\left(q, p_{j}\right) \leq r$
if $\max \left\{d\left(q, p_{j}\right)-r, 0\right\} \leq i \leq d\left(q, p_{j}\right)+r$

$\begin{array}{cc}3 \mid & { }_{0}^{\mid 5} \\ 0 & 0\end{array}$

Fixed Queries Tree (FQT)

- modification of BKT
- each level has a single pivot
- all objects stored in leaves
- during search distance computations are saved
- usually more branches are accessed \rightarrow one distance comp.

Fixed-Height FQT (FHFQT)

- extension of FQT
- all leaf nodes at the same level
- increased filtering using more routing objects
- extended tree depth does not typically introduce further computations

Fixed Queries Array (FQA)

- based on FHFQT
- an h-level tree is transformed to an array of paths
- every leaf node is represented with a path from the root node
- each path is encoded as h values of distance
- a search algorithm turns to a binary search in array intervals

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	4
$\mathbf{2}$	0	$\mathbf{3}$	$\mathbf{4}$	5	6

Vantage Point Tree (VPT)

- uses ball partitioning
- recursively divides given data set X
- choose vantage point $p \in X$, compute median m
- $S_{1}=\{x \in X-\{p\} \mid d(x, p) \leq m\}$
- $S_{2}=\{x \in X-\{p\} \mid d(x, p) \geq m\}$
- the equality sign ensures balancing

VPT (cont.)

- One or more objects can be accommodated in leaves.
- VP tree is a balanced binary tree.

- Pivots p_{1}, p_{2} and p_{3} belong to the database!
- In the following, we assume just one object in a leaf.

VPT: Range Search

Given a query $R(q, r)$:

- traverse the tree starting from its root
- in each internal node (p_{i}, m_{i}), do:
- if $d\left(q, p_{i}\right) \leq r$
- if $d\left(q, p_{i}\right)-r \leq m_{i}$
- if $d\left(q, p_{i}\right)+r \geq m_{i}$

report p_{i} on output
search the left sub-tree (a, b)
search the right sub-tree (b)
(b)

VPT: k-NN Search

Given a query $N N(q)$:

- initialization: $d_{N N}=d_{\max } \quad N N=n i l$
- traverse the tree starting from its root
- in each internal node (p_{i}, m_{i}), do:
- if $d\left(q, p_{i}\right) \leq d_{N N}$
set $d_{N N}=d\left(q, p_{i}\right), N N=p_{i}$
- if $d\left(q, p_{i}\right)-d_{N N} \leq m_{i} \quad$ search the left sub-tree
- if $d\left(q, p_{i}\right)+d_{N N} \geq m_{i} \quad$ search the right sub-tree
- $k-N N$ search only requires the arrays $d_{N N}[k]$ and $N N[k]$
- The arrays are kept ordered with respect to the distance to q.

Multi-Way Vantage Point Tree

- inherits all principles from VPT
- but partitioning is modified
- m-ary balanced tree
- applies multi-way ball partitioning

Vantage Point Forest (VPF)

- a forest of binary trees
- uses excluded middle partitioning

- middle area is excluded from the process of tree building

VPF (cont.)

- given data set X is recursively divided and a binary tree is built
- excluded middle areas are used for building another binary tree

VPF: Range Search

Given a query $R(q, r)$:

- start with the first tree
- traverse the tree starting from its root
- in each internal node (p_{i}, m_{i}), do:
- if $d\left(q, p_{i}\right) \leq r$
- if $d\left(q, p_{i}\right)-r \leq m_{i}-\rho$
- if $d\left(q, p_{i}\right)+r \geq m_{i}-\rho$
- if $d\left(q, p_{i}\right)+r \geq m_{i}+\rho$
- if $d\left(q, p_{i}\right)-r \leq m_{i}+\rho$
- if $d\left(q, p_{i}\right)-r \geq m_{i}-\rho$ and $d\left(q, p_{i}\right)+r \leq m_{i}+\rho$
report p_{i}
search the left sub-tree
search the next tree !!!
search the right sub-tree
search the next tree !!!
search only the next tree !!!

VPF: Range Search (cont.)

- Query intersects all partitions
- Search both sub-trees
- Search the next tree

- Query collides only with exclusion
- Search just the next tree

Survey of existing approaches

1. ball partitioning methods
2. generalized hyper-plane partitioning approaches
3. Bisector Tree
4. Generalized Hyper-plane Tree
5. exploiting pre-computed distances
6. hybrid indexing approaches
7. approximated techniques

Bisector Tree (BT)

- Applies generalized hyper-plane partitioning
- Recursively divides a given dataset X
- Choose two arbitrary points $p_{1}, p_{2} \in X$
- Form subsets from remaining objects:

$$
\begin{aligned}
& S_{1}=\left\{0 \in X, d\left(o, p_{1}\right) \leq d\left(o, p_{2}\right)\right\} \\
& S_{2}=\left\{0 \in X, d\left(o, p_{1}\right)>d\left(o, p_{2}\right)\right\}
\end{aligned}
$$

- Covering radii r_{1}^{c} and r_{2}^{c} are established:
- The balls can intersect!

BT: Range Query

Given a query $R(q, r)$:

- traverse the tree starting from its root
- in each internal node $\left\langle p_{i} p_{j}\right\rangle$, do:
- report p_{x} on output if $d\left(q, p_{x}\right) \leq r$
- enter a child of $p_{x} \quad$ if $d\left(q, p_{x}\right)-r \leq r_{x}^{c}$

Monotonous Bisector Tree (MBT)

- A variant of Bisector Tree
- Child nodes inherit one pivot from the parent.
- For convenience, no covering radii are shown.

MBT (cont.)

- Fewer pivots used \rightarrow fewer distance evaluations during query processing \& more objects in leaves.

Bisector Tree

Monotonous Bisector Tree

Voronoi Tree

- Extension of Bisector Tree
- Uses more pivots in each internal node
- Usually three pivots

Generalized Hyper-plane Tree (GHT)

Similar to Bisector Trees

- Covering radii are not used

GHT: Range Query

- Pruning based on hyper-plane partitioning

Given a query $R(q, r)$:

- traverse the tree starting from its root
- in each internal node $<p_{i}, p_{j}>$, do:
- report p_{x} on output if $d\left(q, p_{x}\right) \leq r$

- enter the left child if $d\left(q, p_{i}\right)-r \leq d\left(q, p_{j}\right)+r$
- enter the right child if $d\left(q, p_{i}\right)+r \geq d\left(q, p_{j}\right)-r$

Survey of existing approaches

1. ball partitioning methods
2. generalized hyper-plane partitioning approaches
3. exploiting pre-computed distances
4. AESA
5. Linear AESA
6. Other Methods - Shapiro, Spaghettis
7. hybrid indexing approaches
8. approximated techniques

Exploiting Pre-computed Distances

- During insertion of an object into a structure some distances are evaluated
- If they are remembered, we can employ them in filtering when processing a query

AESA

- Approximating and Eliminating Search Algorithm
- Matrix $n \times n$ of distances is stored
- Due to the symmetry, only a half $(n(n-1) / 2)$ is stored.

- Every object can play a role of pivot.

AESA: Range Query

Given a query $R(q, r)$:

- Randomly pick an object and use it as pivot p
- Compute d(q,p)
- Filter out an object o if $/ d(q, p)-d(p, o) />r$

$O_{4} \quad O_{5} \quad O_{0}$					
ϕ_{1}	1.6	2.0	3.5	1.6	3.6
$\Rightarrow \phi_{2}$		1.0	2.6	2.6	4.2
ϕ_{3}			1.6	2.1	3.5
O_{4}				3.0	3.4
O_{5}					2.0
o_{6}					

AESA: Range Query (cont.)

- From remaining objects, select another object as pivot p.
- To maximize pruning, select the closest object to q.
- It maximizes the lower bound on distances $/ d(q, p)-d(p, o) /$.
- Filter out objects using p.

	O_{1}	O_{2}	O_{3}	0_{4}	O_{5}	O_{6}
O_{1}		1.6	2.0	3.5	1.6	3.6
O_{2}			1.0	2.6	2.6	4.2
O_{3}				1.6	2.1	3.5
$¢_{4}$					3.0	3.4
$\triangle O_{5}$						2.0
O_{6}						

AESA: Range Query (cont.)

- This process is repeated until the number of remaining objects is small enough
- Or all objects have been used as pivots.
- Check remaining objects directly with q.
- Report o if $d(q, o) \leq r$.

	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}
O_{1}	1.6	2.0	3.5	1.6	3.6
O_{2}		1.0	2.6	2.6	4.2
O_{3}			1.6	2.1	3.5
O_{4}				3.0	3.4
O_{5}					2.0
O_{6}					

- Objects o that fulfill $d(q, p)+d(p, o) \leq r$ can directly be reported on the output without further checking.
- E.g. o_{5}, because it was the pivot in the previous step.

Linear AESA (LAESA)

- AESA is quadratic in space
- LAESA stores distances to m pivots only.
- Pivots should be selected conveniently
- Pivots as far away from each other as possible are chosen.

$$
\text { pivots }\left\{\right.
$$

LAESA: Range Query

- Due to limited number of pivots, the algorithm differs.
- We need not be able to select a pivot among nondiscarded objects.
- First, all pivots are used for filtering.
- Next, remaining objects are directly compared to q.

$\cdots 3$						
$\Rightarrow \phi_{2}$	1.6	0	1.0	2.6	2.6	4.2
$\triangle O_{6}$	3.6	4.2	3.5	3.4	2.0	0

LAESA: Summary

- AESA and LAESA tend to be linear in distance computations
- For larger query radii or higher values of k

Shapiro's LAESA

- Very similar to LAESA
- Database objects are sorted with respect to the first pivot.

Shapiro's LAESA: Range Query

Given a query $R(q, r)$:

- Compute $d\left(q, p_{1}\right)$
- Start with object o_{i} "closest" to q
- i.e. $/ d\left(q, p_{1}\right)-d\left(p_{1}, o_{i}\right) /$ is minimal

$p_{1}=o_{2}$						
$d\left(q, o_{2}\right)=3.2$						
	O_{2}	O_{3}	O_{1}	O_{4}	O_{5}	O_{6}
O_{2}	0	1.0	1.6	2.6	2.6	4.2
O_{6}	4.2	3.5	3.6	3.4	2.0	0

Shapiro's LAESA: Range Query (cont.)

- Next, o_{i} is checked against all pivots
- Discard it if $/ d\left(q, p_{j}\right)-d\left(p_{j} o_{i}\right) />r$ for any p_{j}
- If not eliminated, check $d\left(q, o_{i}\right) \leq r$

Shapiro's LAESA: Range Query (cont.)

Search continues with objects $o_{i+1}, o_{i-1}, o_{i+2}, o_{i-2}, \ldots$

- Until conditions $\left|d\left(q, p_{1}\right)-d\left(p_{1}, o_{i+2}\right)\right|>r$ and $\left|d\left(q, p_{1}\right)-d\left(p_{1}, o_{i-2}\right)\right|>r$ hold

$$
\begin{aligned}
& p_{1}=o_{2} \quad d\left(q, o_{2}\right)=3.2
\end{aligned}
$$

$$
\begin{aligned}
& \left|d\left(q, o_{2}\right)-d\left(o_{2}, o_{1}\right)\right|=1.6>1.4 \\
& \left|d\left(q, o_{2}\right)-d\left(o_{2}, o_{6}\right)\right|=1 \leq 1.4
\end{aligned}
$$

Spaghettis

- Improvement of LAESA
- Matrix $m \times n$ is stored in m arrays of length n.
- Each array is sorted according to the distances in it.
- Position of object o can vary from array to array
- Pointers (or array permutations) with respect to the preceding array must be stored.

	O_{2}	O_{6}
O_{2}	0	$\rightarrow \frac{0}{2.0}$
O_{3}	1.0	
O_{1}	1.6	$\rightarrow 3.4$
	26	
		$\rightarrow 3.5$
O_{5}	2.6	3.6
O_{6}	4.2	4.2

Spaghettis: Range Query

Given a query $R(q, r)$:

- Compute distances to pivots, i.e. $d\left(q, p_{i}\right)$
- One interval is defined on each of m arrays
- $\left[d\left(q, p_{i}\right)-r, d\left(q, p_{i}\right)+r\right]$ for all $1 \leq i \leq m$

Spaghettis: Range Query (cont.)

- Qualifying objects lie in the intervals' intersection.
- Pointers are followed from array to array.
- Non-discarded objects are checked against q.

Response: $\mathrm{o}_{5}, \mathrm{O}_{6}$

Survey of existing approaches

1. ball partitioning methods
2. generalized hyper-plane partitioning approaches
3. exploiting pre-computed distances
4. hybrid indexing approaches
5. Multi Vantage Point Tree
6. Geometric Near-neighbor Access Tree
7. Spatial Approximation Tree
8. M-tree
9. Similarity Hashing
10. approximated techniques

Introduction

- Structures that store pre-computed distances have high space requirements
- But good performance boost during query processing.
- Hybrid approaches combine partitioning and precomputed distances into a single system
- Less space requirements
- Good query performance

Multi Vantage Point Tree (MVPT)

- Based on Vantage Point Tree (VPT)
- Targeted to static collections as well.
- Tries to decrease the number of pivots
- With the aim of improving performance in terms of distance computations.
- Stores distances to pivots in leaves
- These distances are evaluated during insertion of objects.
- No object duplication
- Objects playing the role of a pivot are stored only in internal nodes.
- Leaf nodes can contain more than one object.

MVPT: Structure

- Two pivots are used in each internal node
- VPT uses just one pivot.
- Idea: two levels of VPT collapsed into a single node

MPVT: Internal Node

- Ball partitioning is applied
- Pivot p_{2} is shared

- In general, MVPT can use k pivots in a node
- Number of children is $2^{k}!!!$
- Multi-way partitioning can be used as well $\rightarrow m^{k}$ children

MVPT: Leaf Node

- Leaf node stores two "pivots" as well.
- The first pivot is selected randomly,
- The second pivot is picked as the furthest from the first one.
- The same selection is used in internal nodes.
- Capacity is cobjects +2 pivots.

Distances from objects to the first h pivots on the path from the root

MVPT: Range Search

Given a query $R(q, r)$:

- Initialize the array PATH of h distances from q to the first h pivots.
- Values are initialized to undefined.

- Start in the root node and traverse the tree (depthfirst).

MVPT: Range Search (cont.)

- In an internal node with pivots p_{i}, p_{i+1} :
- Compute distances $d\left(q, p_{i}\right), d\left(q, p_{i+1}\right)$
- Store in q.PATH
- if they are within the first h pivots from the root.
- If $d\left(q, p_{i}\right) \leq r \quad$ output p_{i}
- If $d\left(q, p_{i+1}\right) \leq r \quad$ output p_{i+1}
- If $d\left(q, p_{i}\right) \leq d_{m 1}$
- If $d\left(q, p_{i+1}\right) \leq d_{m 2}$ visit the first branch
- If $d\left(q, p_{i+1}\right) \geq d_{m 2}$ visit the second branch
- If $d\left(q, p_{i}\right) \geq d_{m 1}$
- If $d\left(q, p_{i+1}\right) \leq d_{m 3}$ visit the third branch
- If $d\left(q, p_{i+1}\right) \geq d_{m 3}$ visit the fourth branch

MVPT: Range Search (cont.)

- In a leaf node with pivots p_{1}, p_{2} and objects o_{i} :
- Compute distances $d\left(q, p_{1}\right), d\left(q, p_{2}\right)$
- If $d\left(q, p_{i}\right) \leq r \quad$ output p_{i}
- If $d\left(q, p_{i+1}\right) \leq r \quad$ output p_{i+1}
- For all objects o_{1}, \ldots, o_{c} :
- If $d\left(q, p_{1}\right)-r \leq d\left(o_{i}, p_{1}\right) \leq d\left(q, p_{1}\right)+r$ and $d\left(q, p_{2}\right)-r \leq d\left(o_{i}, p_{2}\right) \leq d\left(q, p_{2}\right)+r$ and $\left.\left.\left.\left.\forall p_{j}: q \cdot P A T H\right]\right]-r \leq o_{i} \cdot P A T H\right]\right] \leq q \cdot P A T H[j]+r$
- Compute $d\left(q, o_{i}\right)$
- If $d\left(q, o_{i}\right) \leq r$ output o_{i}

Geometric Near-neighbor Access Tree

 (GNAT)- m-ary tree based on Voronoi-like partitioning
- m can vary with the level in the tree.
- A set of pivots $P=\left\{p_{1}, \ldots, p_{m}\right\}$ is selected from X

- Split X into m subsets S_{i}
- $\forall o \in X-P: \quad 0 \in S_{i}$ if $d\left(p_{i}, o\right) \leq d\left(p_{j}, o\right)$ for all $j=1$.. m
- This process is repeated recursively.

GNAT (cont.)

- Pre-computed distances are also stored.
- An $m \times m$ table of distance ranges is in each internal node.
- Minimum and maximum of distances between each pivot p_{i} and the objects of each subset S_{j} are stored.

GNAT (cont.)

- The $m \times m$ table of distance ranges

- Each range $\left[r^{i j}, r_{h}{ }^{i j}\right]$ is defined as: $r_{l}^{i j}=\min _{o \in S_{j} \cup\left\{p_{j}\right\}} d\left(p_{i}, o\right)$
- Notice that $r_{i}^{i}=0$.

$$
r_{h}^{i j}=\max _{o \in S_{j} \cup\left\{p_{j}\right\}} d\left(p_{i}, o\right)
$$

GNAT: Choosing Pivots

- For good clustering, pivots cannot be chosen randomly.
- From a sample $3 m$ objects, select m pivots:
- Three is an empirically derived constant.
- The first pivot at random.
- The second pivot as the furthest object.
- The third pivot as the furthest object from previous two.
- The minimum of the two distances is maximized.
- Until we have mpivots.

GNAT: Range Search

Given a query $R(q, r)$:

- Start in the root node and traverse the tree (depthfirst).
- In internal nodes, employ the distance ranges to prune some branches.
- In leaf nodes, all objects are directly compared to q.
- If $d(q, o) \leq r$, report o to the output.

GNAT: Range Search (cont.)

- In an internal node with pivots $p_{1}, p_{2}, \ldots, p_{m}$:
- Pick one pivot p_{i} at random.
- Gradually pick next non-examined pivot p_{j} :
- If $d\left(q, p_{i}\right)-r>r_{h}^{i j}$ or $d\left(q, p_{i}\right)+r<r_{1}^{i j}$, discard p_{j} and its sub-tree.
- Remaining pivots p_{j} are compared with q
- If $d\left(q, p_{i}\right)-r>r_{h}^{i j}$, discard p_{j} and its sub-tree.
- If $d\left(q, p_{j}\right) \leq r$, output p_{j}
- The corresponding sub-tree is visited.

Spatial Approximation Tree (SAT)

- A tree based on Voronoi-like partitioning
- But stores relations between partitions, i.e., an edge is between neighboring partitions.
- For correctness in metric spaces, this would require to have edges between all pairs of objects in X.
- SAT approximates such a graph.
- The root p is a randomly selected object from X.
- A set $N(p)$ of p 's neighbors is defined
- Every object $0 \in X-N(p)-\{p\}$ is organized under the closest neighbor in $N(p)$.
- Covering radius is defined for every internal node (object).

SAT: Example

- Intuition of $N(p)$
- Each object of $N(p)$ is closer to p than to any other object in $N(p)$.
- All objects in $X-N(p)-\{p\}$ are closer to an object in $N(p)$ than to p.
- The root is O_{1}
- $N\left(O_{1}\right)=\left\{O_{2}, O_{3}, O_{4}, O_{5}\right\}$
- o_{7} cannot be included since it is closer to O_{3} than to o_{1}.
- Covering radius of o_{1} conceals all objects.

SAT: Building $N(p)$

- Construction of minimal $N(p)$ is NP-complete.
- Heuristics for creating $N(p)$:
- The pivot $p, S=X-\{p\}, N(p)=\{ \}$.
- Sort objects in S with respect to their distances from p.
- Start adding objects to $N(p)$.
- The new object o_{N} is added if it is not closer to any object already in $N(p)$.

SAT: Range Search

Given a query $R(q, r)$:

- Start in the root node and traverse the tree.
- In internal nodes, employ the distance ranges to prune some branches.
- In leaf nodes, all objects are directly compared to q.
- If $d(q, o) \leq r$ report o to the output.

SAT: Range Search (cont.)

- In an internal node with the pivot p and $N(p)$:
- To prune some branches, locate the closest object $o_{c} \in N(p) \cup\{p\}$ to q.
- Discard sub-trees $o_{d} \in N(p)$ such that $d\left(q, o_{d}\right)>2 r+d\left(q, o_{c}\right)$.
- The pruning effect is maximized if $d\left(q, o_{c}\right)$ is minimal.

SAT: Range Search (cont.)

- If we pick s_{2} as the closest object, pruning will be improved.
- The sub-tree p_{2} will be discarded.
- Select the closest object among more "neighbors":
- Use p's ancestor and its neighbors.
- $o_{c} \in \bigcup_{o \in A(p)} N(o) \cup\{o\}$

$$
A(p)=\{t, p, s, u, v\}
$$

SAT: Range Search (cont.)

- Finally, apply covering radii of remaining objects
- Discard o_{d} such that $d\left(q, o_{d}\right)>r_{d}{ }^{c}+r$.

M-tree

- inherently dynamic structure
- disk-oriented (fixed-size nodes)
- built in a bottom-up fashion
- each node constrained by a sphere-like (ball) region
- leaf node: data objects + their distances from a pivot kept in the parent node
- internal node: pivot + radius covering the subtree, distance from the pivot the parent pivot
- filtering: covering radii + pre-computed distances

M-tree: Extensions

- bulk-loading algorithm
- considers the trade-off: dynamic properties vs. performance
- M-tree building algorithm for a dataset given in advance
- results in more efficient M-tree
- Slim-tree
- variant of M-tree (dynamic)
- reduces the fat-factor of the tree
- tree with smaller overlaps between particular tree regions
- many variants and extensions - see Chapter 3

Similarity Hashing

- Multilevel structure
- One hash function (ρ-split function) per level
- Producing several buckets.
- The first level splits the whole data set.
- Next level partitions the exclusion zone of the previous level.
- The exclusion zone of the last level forms the exclusion bucket of the whole structure.

Similarity Hashing: Structure

4 separable buckets at the first level

2 separable buckets at the second level

exclusion bucket of the whole structure

Similarity Hashing: ρ-Split Function

- Produces several separable buckets.
- Queries with radius up to ρ accesses one bucket at most.
- If the exclusion zone is touched, next level must be sought.

Similarity Hashing: Features

- Bounded search costs for queries with radius $\leq \rho$.
- One bucket per level at maximum
- Buckets of static files can be arranged in a way that I/O costs never exceed the sequential scan.
- Direct insertion of objects.
- Specific bucket is addressed directly by computing hash functions.
- D-index is based on similarity hashing.
- Uses excluded middle partitioning as the hash function.

Survey of Existing Approaches

1. ball partitioning methods
2. generalized hyper-plane partitioning approaches
3. exploiting pre-computed distances
4. hybrid indexing approaches
5. approximated techniques

Approximate Similarity Search

- Space transformation techniques
- Introduced very briefly
- Reducing the subset of data to be examined
- Most techniques originally proposed for vector spaces
- Some can also be used in metric spaces
- Some are specific for metric spaces

Exploiting Space Transformations

- Space transformation techniques transform the original data space into another suitable space.
- As an example consider dimensionality reduction.
- Space transformation techniques are typically distance preserving and satisfy the lower-bounding property:
- Distances measured in the transformed space are smaller than those computed in the original space.

Exploiting Space Transformations (cont.)

- Exact similarity search algorithms:
- Search in the transformed space
- Filter out non-qualifying objects by re-measuring distances of retrieved objects in the original space.
- Approximate similarity search algorithms
- Search in the transformed space
- Do not perform the filtering step
- False hits may occur

BBD Trees

- A Balanced Box-Decomposition (BBD) tree hierarchically divides the vector space with d dimensional non-overlapping boxes.
- Leaf nodes of the tree contain a single object.
- BBD trees are intended as a main memory data structure.

BBD Trees (cont.)

- Exact $k-N N(q)$ search is obtained as follows
- Find the leaf containing the query object
- Enumerate leaves in the increasing order of distance from q and maintain the k closest objects.
- Stop when the distance of next leaf is greater than $d\left(q, o_{k}\right)$.
- Approximate $k-N N(q)$:
- Stop when the distance of next leaf is greater than $d\left(q, o_{k}\right) /(1+\varepsilon)$.
- Distances from q to retrieved objects are at most $1+\varepsilon$ times larger than that of the k-th actual nearest neighbor of q.

BBD Trees: Exact 1-NN Search

- Given 1-NN(q):

BBD Trees: Approximate 1-NN Search

- Given 1-NN(q):
- Radius $d\left(q, 0_{N N}\right) /(1+e)$ is used instead!
- Regions 9 and 10 are not accessed:
- They do not intersect the dashed circle of radius $d\left(q, 0_{N N}\right) /(1+e)$.
- The exact $N N$ is missed!

Angle Property Technique

- Observed (non-intuitive) properties in high dimensional vector spaces:
- Objects tend to have the same distance.
- Therefore they tend to be distributed on the surface of ball regions.
- Parent and child regions have very close radii.
- All regions intersect one each other.
- The angle formed by a query point, the centre of a ball region, and any data object is close to 90 degrees.
- The higher the dimensionality, the closer to 90 degrees.
- These properties can be exploited for approximate similarity search.

Angle Property Technique: Example

Clustering for Indexing (Clindex)

- Performs approximate similarity search in vector spaces exploiting clustering techniques.
- The dataset is partitioned into clusters of similar objects:
- Each cluster is represented by a separate file sequentially stored on the disk.

Clindex: Approximate Search

- Approximate similarity search:
- Seeks for the cluster containing (or the cluster closest to) the query object.
- Sorts the objects in the cluster according to the distance to the query.
- The search is approximate since qualifying objects can belong to other (non-accessed) clusters.
- More clusters can be accessed to improve precision.

Clindex: Clustering

- Clustering:
- Each dimension of the d-dimensional vector space is divided into 2^{n} segments: the result is $\left(2^{n}\right)^{d}$ cells in the data space.
- Each cell is associated with the number of objects it contains.

Clindex: Clustering (cont.)

- Clustering starts accessing cells in the decreasing order of number of contained objects:
- If a cell is adjacent to a cluster it is attached to the cluster.
- If a cell is not adjacent to any cluster it is used as the seed for a new cluster.
- If a cell is adjacent to more than one cluster, a heuristics is used to decide:
- if the clusters should be merged or
- which cluster the cell belongs to.

Clindex: Example

			5									
			5	65	5							Missed
			6	76		5						objectis
				$6 / 5$	5							
						\bigcirc	-					
						24	$4 / 2$	2				
							32	2				
							21					
						21	1					
								13	34	44	4	
	1								23	33	6	
	1	1	3						12	21	4	

Vector Quantization index (VQ-Index)

- This approach is also based on clustering techniques to perform approximate similarity search.
- Specifically:
- The dataset is grouped into (non-necessarily disjoint) subsets.
- Lossy compression techniques are used to reduce the size of subsets.
- A similarity query is processed by choosing a subset where to search.
- The chosen compressed dataset is searched after decompressing it.

VQ-Index: Subset Generation

- Subset generation:
- Query objects submitted by users are maintained in a history file.
- Queries in the history file are grouped into m clusters by using k-means algorithm.
- In correspondence of each cluster C_{i} a subset S_{i} of the dataset is generated as follows

$$
S_{i}=\bigcup_{q \in C_{i}} k N N(q)
$$

- An object may belong to several subsets.

VQ-Index: Subset Generation (cont.)

- The overlap of subsets versus performance can be tuned by the choice of m and k
- Large k implies more objects in a subset, so more objects are recalled.
- Large values of m implies more subsets, so less objects to be accessed.

VQ-Index: Compression

- Subset compression with vector quantisation:
- An encoder Enc function is used to associate every vector with an integer value taken from a finite set $\{1, \ldots, n\}$.
- A decoder Dec function is used to associate every number from the set $\{1, \ldots, n\}$ with a representative vector.
- By using Enc and Dec, every vector is represented by a representative vector
- Several vectors might be represented by the same representative.
- Enc is used to compress the content of S_{i} by applying it to every object in it:

$$
S_{i}^{e n c}=\left\{E n c_{i}(x) \mid x \in S_{i}\right\}
$$

VQ-Index: Approximate Search

- Approximate search:
- Given a query q :
- The cluster C_{i} closest to the query is first located.
- An approximation of S_{i} is reconstructed, by applying the decoder function $D e c_{i}$.
- The approximation of S_{i} is searched for qualifying objects.
- Approximation occurs at two stages:
- Qualifying objects may be included in other subsets, in addition to S_{i}.
- The reconstructed approximation of S_{i} may contain vectors which differ from the original ones.

Buoy Indexing

- Dataset is partitioned in disjoint clusters.
- A cluster is represented by a representative element - the buoy.
- Clusters are bounded by a ball region having the buoy as center and the distance of the buoy to the farthest element of the cluster as the radius.
- This approach can be used in pure metric spaces.

Buoy Indexing: Similarity Search

- Given an exact $k-N N$ query, clusters are accessed in the increasing distance to their buoys, until current result-set cannot be improved.
- That is, until $d\left(q, o_{k}\right)+r_{i}<d\left(q, p_{i}\right)$
- p_{i} is the buoy, r_{i} is the radius
- An approximate $k-N N$ query can be processed by stopping when
- either previous exact condition is true, or
- a specified ratio f of clusters has been accessed.

Hierarchical Decomposition of Metric

Spaces

- In addition to previous ones, there are other methods that were appositively designed to
- Work on generic metric spaces
- Organize large collections of data
- They exploit the hierarchical decomposition of metric spaces.

Hierarchical Decomposition of Metric

Spaces (cont.)

- These will be discussed in details later on:
- Relative error approximation
- Relative error on distances of the approximate result is bounded.
- Good fraction approximation
- Retrieves k objects from a specified fraction of the objects closest to the query.

Hierarchical Decomposition of Metric

Spaces (cont.)

- These will be discussed in details later on:
- Small chance improvement approximation
- Stops when chances of improving current result are low.
- Proximity based approximation
- Discards regions with small probability of containing qualifying objects.
- PAC (Probably Approximately Correct) nearest neighbor search
- Relative error on distances is bounded with a probability specified.

