SIMILARITY SEARCH The Metric Space Approach

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko

> Similarity Search The Metric Space Approach

Table of Contents

Part I: Metric searching in a nutshell

- Foundations of metric space searching
- Survey of existing approaches
- Part II: Metric searching in large collections
- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes

Survey of existing approaches

1. ball partitioning methods

- 2. generalized hyper-plane partitioning approaches
- 3. exploiting pre-computed distances
- 4. hybrid indexing approaches
- 5. approximated techniques

Survey of existing approaches

1. ball partitioning methods

- 1. Burkhard-Keller Tree
- 2. Fixed Queries Tree
- 3. Fixed Queries Array
- 4. Vantage Point Tree
 - 1. Multi-Way Vantage Point Tree
- 5. Excluded Middle Vantage Point Forest
- 2. generalized hyper-plane partitioning approaches
- 3. exploiting pre-computed distances
- 4. hybrid indexing approaches
- 5. approximated techniques

Burkhard-Keller Tree (BKT) [BK73]

- Applicable to discrete distance functions only
- Recursively divides a given dataset X
- Choose an arbitrary point $p_j \in X$, form subsets:

 $X_i = \{o \in X, d(o, p_i) = i\}$ for each distance $i \ge 0$.

For each X_i create a sub-tree of p_i

empty subsets are ignored

BKT: Range Query

Given a query R(q,r):

- traverse the tree starting from root
- in each internal node p_i , do:
 - □ report p_j on output if $d(q,p_j) \le r$
 - enter a child i

Fixed Queries Tree (FQT)

- modification of BKT
- each level has a single pivot
 - all objects stored in leaves
- during search distance computations are saved
 - usually more branches are accessed \rightarrow one distance comp.

Fixed-Height FQT (FHFQT)

- extension of FQT
- all leaf nodes at the same level
 - increased filtering using more routing objects
 - extended tree depth does not typically introduce further computations

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

Fixed Queries Array (FQA)

- based on FHFQT
- an *h*-level tree is transformed to an array of paths
 - every leaf node is represented with a path from the root node
 - each path is encoded as h values of distance
- a search algorithm turns to a binary search in array intervals

Vantage Point Tree (VPT)

uses ball partitioning

 \Box recursively divides given data set X

• choose vantage point $p \in X$, compute median m

□
$$S_1 = \{x \in X - \{p\} \mid d(x,p) \le m\}$$

□
$$S_2 = \{x \in X - \{p\} \mid d(x,p) \ge m\}$$

the equality sign ensures balancing

 p_2

VPT (cont.)

- One or more objects can be accommodated in leaves.
- VP tree is a balanced binary tree.

Pivots p₁,p₂ and p₃ belong to the database!
In the following, we assume just one object in a leaf.

VPT: Range Search

Given a query R(q,r):

- traverse the tree starting from its root
- in each internal node (p_i, m_i), do:
 - $\Box \quad \text{if } d(q,p_i) \leq r$
 - $\Box \quad \text{if } d(q,p_i) r \le m_i$
 - $\Box \quad \text{if } d(q,p_i) + r \geq m_i$

- report *p_i* on output
- search the left sub-tree (a,b)
- search the right sub-tree (b)

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

VPT: k-NN Search

Given a query *NN*(*q*):

- initialization: $d_{NN} = d_{max}$ NN=nil
- traverse the tree starting from its root
- in each internal node (p_i, m_i) , do:
 - $\Box \text{ if } d(q,p_i) \le d_{NN} \qquad \text{set } d_{NN} = d(q,p_i), NN = p_i$
 - $\Box \quad \text{if } d(q,p_i) d_{NN} \leq m_i$
- *n_i* search the left sub-tree
 - $\Box \quad \text{if } d(q,p_i) + d_{NN} \ge m_i$
- search the right sub-tree
- k-NN search only requires the arrays d_{NN}[k] and NN[k]
 The arrays are kept ordered with respect to the distance to q.

Multi-Way Vantage Point Tree

- inherits all principles from VPT
 - but partitioning is modified
- *m*-ary balanced tree
- applies multi-way ball partitioning

Vantage Point Forest (VPF)

- a forest of binary trees
- uses excluded middle partitioning

 middle area is excluded from the process of tree building

VPF (cont.)

- given data set X is recursively divided and a binary tree is built
- excluded middle areas are used for building another binary tree

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

VPF: Range Search

Given a query R(q,r):

- start with the first tree
 - traverse the tree starting from its root
 - in each internal node (p_i, m_i) , do:
 - if $d(q,p_i) \le r$
 - if $d(q,p_i) r \le m_i \rho$ • if $d(q,p_i) + r \ge m_i - \rho$
 - if $d(q,p_i) + r \ge m_i + \rho$ • if $d(q,p_i) - r \le m_i + \rho$
 - if $d(q,p_i) r \ge m_i \rho$ and $d(q,p_i) + r \le m_i + \rho$

report p_i

search the left sub-tree

search the next tree !!!

search the right sub-tree

search the next tree !!!

search only the next tree !!!

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

VPF: Range Search (cont.)

- Query intersects all partitions
 - Search both sub-trees
 - Search the next tree

- Query collides only with exclusion
 - Search just the next tree

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

Survey of existing approaches

- 1. ball partitioning methods
- 2. generalized hyper-plane partitioning approaches
 - 1. Bisector Tree
 - 2. Generalized Hyper-plane Tree
- 3. exploiting pre-computed distances
- 4. hybrid indexing approaches
- 5. approximated techniques

Bisector Tree (BT)

- Applies generalized hyper-plane partitioning
- Recursively divides a given dataset X
- Choose two arbitrary points $p_1, p_2 \in X$
- Form subsets from remaining objects:

 $S_1 = \{ o \in X, d(o, p_1) \le d(o, p_2) \}$ $S_2 = \{ o \in X, d(o, p_1) > d(o, p_2) \}$

- Covering radii r_1^c and r_2^c are established:
 - The balls can intersect!

 r_1^c

 p_1

 p_2

 r_2^c

BT: Range Query

Given a query R(q,r):

- traverse the tree starting from its root
- in each internal node <p_i,p_i>, do:
 - report p_x on output
 - enter a child of p_x if

r.c if $d(q,p_x) \leq r$ if $d(q,p_x) - r \leq r_x^c$ r^c pi

Monotonous Bisector Tree (MBT)

- A variant of Bisector Tree
- Child nodes inherit one pivot from the parent.

□ For convenience, no covering radii are shown.

MBT (cont.)

■ Fewer pivots used → fewer distance evaluations during query processing & more objects in leaves.

Voronoi Tree

Extension of Bisector Tree

Uses more pivots in each internal node

Usually three pivots

Generalized Hyper-plane Tree (GHT)

- Similar to Bisector Trees
- Covering radii are not used

GHT: Range Query

Pruning based on hyper-plane partitioning

Given a query R(q,r):

- traverse the tree starting from its root
- in each internal node <p_i,p_i>, do:
 - report p_x on output
 - enter the left child
 - enter the right child

f
$$d(q,p_i) - r \le d(q,p_j) + r$$

f $d(q,p_i) + r \ge d(q,p_i) - r$

pi

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach if $d(a, p_{n}) \leq r$

Survey of existing approaches

- 1. ball partitioning methods
- 2. generalized hyper-plane partitioning approaches
- **3.** exploiting pre-computed distances
 - 1. AESA
 - 2. Linear AESA
 - 3. Other Methods Shapiro, Spaghettis
- 4. hybrid indexing approaches
- 5. approximated techniques

Exploiting Pre-computed Distances

- During insertion of an object into a structure some distances are evaluated
- If they are remembered, we can employ them in filtering when processing a query

AESA

- Approximating and Eliminating Search Algorithm
- Matrix n×n of distances is stored
 - Due to the symmetry, only a half (n(n-1)/2) is stored.

Every object can play a role of *pivot*.

AESA: Range Query

Given a query R(q,r):

- Randomly pick an object and use it as pivot p
- Compute d(q,p)
- Filter out an object o if |d(q,p) d(p,o)| > r

AESA: Range Query (cont.)

- From remaining objects, select another object as pivot p.
 - □ To maximize pruning, select the closest object to *q*.
 - □ It maximizes the lower bound on distances |d(q,p) d(p,o)|.
- Filter out objects using p.

 $O_1 \ O_2$ **0**₅ O_6 1.6 2.0 3.5 1.6 3.6 **O**₁ 2.6 2.6 1.0 4.2 O_2 1.6 2.1 3.5 03 3.0 3.4 \mathbf{Q}_4 2.0 \mathbf{O}_{5} O_6

AESA: Range Query (cont.)

- This process is repeated until the number of remaining objects is small enough
 - Or all objects have been used as pivots.
- Check remaining objects directly with q. Report *o* if $d(q,o) \le r$.

	O ₁	<i>O</i> ₂	<i>0</i> 3	04	<i>0</i> ₅	<i>0</i> ₆
O ₁		1.6	2.0	3.5	1.6	3.6
<i>0</i> ₂			1.0	2.6	2.6	4.2
0 3				1.6	2.1	3.5
0 ₄					3.0	3.4
0 5						2.0
0 ₆						

Objects o that fulfill $d(q,p)+d(p,o) \leq r$ can directly be reported on the output without further checking. E.g. o_5 , because it was the pivot in the previous step.

Linear AESA (LAESA)

- AESA is quadratic in space
- LAESA stores distances to *m* pivots only.
- Pivots should be selected conveniently
 - Pivots as far away from each other as possible are chosen.

LAESA: Range Query

- Due to limited number of pivots, the algorithm differs.
- We need not be able to select a pivot among nondiscarded objects.
 - First, all pivots are used for filtering.
 - Next, remaining objects are directly compared to q.

LAESA: Summary

- AESA and LAESA tend to be linear in distance computations
 - □ For larger query radii or higher values of *k*

Shapiro's LAESA

- Very similar to LAESA
- Database objects are sorted with respect to the first pivot.

Shapiro's LAESA: Range Query

Given a query R(q,r):

- Compute $d(q,p_1)$
- Start with object o_i "closest" to q
 - □ i.e. $|d(q,p_1) d(p_1,o_i)|$ is minimal

Shapiro's LAESA: Range Query (cont.)

Next, o_i is checked against all pivots

- Discard it if $|d(q,p_j) d(p_j,o_j)| > r$ for any p_j
- □ If not eliminated, check $d(q,o_i) \le r$

Shapiro's LAESA: Range Query (cont.)

 Search continues with objects O_{i+1}, O_{i-1}, O_{i+2}, O_{i-2}, …
 □ Until conditions |d(q,p₁) - d(p₁,o_{i+2})| > r and |d(q,p₁) - d(p₁,o_{i-2})| > r hold

Spaghettis

- Improvement of LAESA
- Matrix $m \times n$ is stored in *m* arrays of length *n*.
- Each array is sorted according to the distances in it.
- Position of object o can vary
 - from array to array
 - Pointers (or array permutations) with respect to the preceding array must be stored.

Spaghettis: Range Query

Given a query R(q,r):

- Compute distances to pivots, i.e. $d(q,p_i)$
- One interval is defined on each of m arrays

 $\Box [d(q,p_i) - r, d(q,p_i) + r] \text{ for all } 1 \le i \le m$

Spaghettis: Range Query (cont.)

- Qualifying objects lie in the intervals' intersection.
 Pointers are followed from array to array.
- Non-discarded objects are checked against q.

Survey of existing approaches

- 1. ball partitioning methods
- 2. generalized hyper-plane partitioning approaches
- 3. exploiting pre-computed distances

4. hybrid indexing approaches

- 1. Multi Vantage Point Tree
- 2. Geometric Near-neighbor Access Tree
- 3. Spatial Approximation Tree
- 4. M-tree
- 5. Similarity Hashing

5. approximated techniques

Introduction

- Structures that store pre-computed distances have high space requirements
 - But good performance boost during query processing.
- Hybrid approaches combine partitioning and precomputed distances into a single system
 - Less space requirements
 - Good query performance

Multi Vantage Point Tree (MVPT)

- Based on Vantage Point Tree (VPT)
 - Targeted to static collections as well.
- Tries to decrease the number of pivots
 - With the aim of improving performance in terms of distance computations.
- Stores distances to pivots in leaves
 - These distances are evaluated during insertion of objects.
- No object duplication
 - Objects playing the role of a pivot are stored only in internal nodes.
- Leaf nodes can contain more than one object.

MVPT: Structure

Two pivots are used in each internal node

- VPT uses just one pivot.
- Idea: two levels of VPT collapsed into a single node

MPVT: Internal Node

In general, MVPT can use k pivots in a node
 Number of children is 2^k!!!

• Multi-way partitioning can be used as well $\rightarrow m^k$ children

MVPT: Leaf Node

Leaf node stores two "pivots" as well.

- The first pivot is selected randomly,
- The second pivot is picked as the furthest from the first one.
- □ The same selection is used in internal nodes.
- Capacity is c objects + 2 pivots.

Distances from objects to the first *h* pivots on the path from the root

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

MVPT: Range Search

Given a query R(q,r):

- Initialize the array PATH of h distances from q to the first h pivots.
 - Values are initialized to undefined.

$$\begin{array}{ccc} q.PATH: & p_1 & \hline \\ p_2 & \hline \\ & \vdots \\ & p_h & \hline \end{array}$$

 Start in the root node and traverse the tree (depthfirst).

MVPT: Range Search (cont.)

- In an internal node with pivots p_i , p_{i+1} :
- Compute distances $d(q,p_i)$, $d(q,p_{i+1})$
 - □ Store in *q.PATH*
 - if they are within the first h pivots from the root.
 - $\Box \quad \text{If } d(q,p_i) \le r \qquad \text{output } p_i$
 - □ If $d(q, p_{i+1}) \le r$ output p_{i+1}
 - $\Box \quad \text{If } d(q,p_i) \leq d_{m1}$
 - If $d(q, p_{i+1}) \le d_{m2}$ visit the first branch
 - If $d(q, p_{i+1}) \ge d_{m2}$ visit the second branch
 - $\Box \quad \text{If } d(q,p_i) \ge d_{m1}$
 - If $d(q, p_{i+1}) \le d_{m3}$ visit the third branch
 - If $d(q, p_{i+1}) \ge d_{m3}$ visit the fourth branch

MVPT: Range Search (cont.)

- In a leaf node with pivots p_1 , p_2 and objects o_i :
- Compute distances $d(q,p_1)$, $d(q,p_2)$
 - $\Box \quad \text{If } d(q,p_i) \leq r \qquad \text{output } p_i$
 - □ If $d(q, p_{i+1}) \le r$ output p_{i+1}
- For all objects o_1, \ldots, o_c :
 - □ If $d(q,p_1) r \le d(o_i,p_1) \le d(q,p_1) + r$ and $d(q,p_2) - r \le d(o_i,p_2) \le d(q,p_2) + r$ and $\forall p_j: q.PATH[j] - r \le o_i.PATH[j] \le q.PATH[j] + r$
 - Compute $d(q,o_i)$
 - If $d(q, o_i) \le r$ output o_i

Geometric Near-neighbor Access Tree (GNAT)

- *m*-ary tree based on
 Voronoi-like partitioning
 - *m* can vary with the level in the tree.
- A set of pivots P={p₁,...,p_m} is selected from X
 - Split X into m subsets S_i
 - □ $\forall o \in X P$: $o \in S_i$ if $d(p_i, o) \le d(p_j, o)$ for all j=1..m
 - This process is repeated recursively.

 $0_{2} 0_{3} 0_{0}$ $0_{1}0_{6}$ 0507 $0_4 0_8$

GNAT (cont.)

- Pre-computed distances are also stored.
- An m×m table of distance ranges is in each internal node.
 - Minimum and maximum
 of distances between each
 pivot *p_i* and the objects of
 each subset *S_j* are stored.

GNAT (cont.)

The m×m table of distance ranges

■ Each range $[r_l^{ij}, r_h^{ij}]$ is defined as: $r_l^{ij} = \min_{o \in S_j \cup \{p_j\}} d(p_i, o)$ □ Notice that $r_l^{ii}=0$.

$$r_h^{ij} = \max_{o \in S_j \cup \{p_j\}} d(p_i, o)$$

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

GNAT: Choosing Pivots

- For good clustering, pivots cannot be chosen randomly.
- From a sample *3m* objects, select *m* pivots:
 - Three is an empirically derived constant.
 - The first pivot at random.
 - The second pivot as the furthest object.
 - The third pivot as the furthest object from previous two.
 - The minimum of the two distances is maximized.
 - ...
 - Until we have *m* pivots.

GNAT: Range Search

Given a query R(q,r):

- Start in the root node and traverse the tree (depthfirst).
- In internal nodes, employ the distance ranges to prune some branches.
- In leaf nodes, all objects are directly compared to q.
 If d(q,o)≤ r, report o to the output.

GNAT: Range Search (cont.)

- In an internal node with pivots p₁, p₂,..., p_m:
 Pick one pivot p_i at random.
- Gradually pick next non-examined pivot p_i:
 - □ If $d(q,p_i)$ - $r > r_h^{ij}$ or $d(q,p_i)$ + $r < r_l^{ij}$, discard p_j and its sub-tree.
- Remaining pivots p_j are compared with q
 - □ If $d(q,p_i)-r > r_h^{jj}$, discard p_j and its sub-tree.
 - □ If $d(q,p_j) \le r$, output p_j
 - The corresponding sub-tree is visited.

 p_i

r^{ij}

 q_2^-

r_hij

r_hjj

Spatial Approximation Tree (SAT)

- A tree based on Voronoi-like partitioning
 - But stores relations between partitions, i.e., an edge is between neighboring partitions.
 - For correctness in metric spaces, this would require to have edges between all pairs of objects in X.
- SAT approximates such a graph.
- The root p is a randomly selected object from X.
 - A set N(p) of p's neighbors is defined
 - Every object $o \in X$ -N(p)-{p} is organized under the closest neighbor in N(p).
 - Covering radius is defined for every internal node (object).

SAT: Example

- Intuition of N(p)
 - Each object of N(p) is closer to p than to any other object in N(p).
 - All objects in X-N(p)-{p} are closer to an object in N(p) than to p.
- The root is o₁
 - $\square N(O_1) = \{O_2, O_3, O_4, O_5\}$
 - o_7 cannot be included since it is closer to o_3 than to o_1 .
 - Covering radius of o₁ conceals all objects.

SAT: Building N(p)

- Construction of minimal N(p) is NP-complete.
- Heuristics for creating N(p):
 The pivot p, S=X-{p}, N(p)={}.
 - □ Sort objects in S with respect to their distances from *p*.
 - Start adding objects to N(p).
 - The new object o_N is added if it is not closer to any object already in N(p).

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

SAT: Range Search

Given a query R(q,r):

- Start in the root node and traverse the tree.
- In internal nodes, employ the distance ranges to prune some branches.
- In leaf nodes, all objects are directly compared to q.
 If d(q,o)≤ r report o to the output.

SAT: Range Search (cont.)

- In an internal node with the pivot p and N(p):
- To prune some branches, locate the closest object $o_c \in N(p) \cup \{p\}$ to q.
 - Discard sub-trees $o_d \in N(p)$ such that $d(q,o_d) > 2r + d(q,o_c)$.
 - The pruning effect is maximized if d(q,o_c) is minimal.

SAT: Range Search (cont.)

- If we pick s₂ as the closest object, pruning will be improved.
 - The sub-tree p_2 will be discarded.
- Select the closest object among more "neighbors":
 - Use p's ancestor and its neighbors.

•
$$o_c \in \bigcup_{o \in A(p)} N(o) \cup \{o\}$$

 $A(p) = \{t, p, s, u, v\}$

SAT: Range Search (cont.)

Finally, apply covering radii of remaining objects
 Discard o_d such that d(q,o_d)>r_d^c+r.

M-tree

- inherently dynamic structure
- disk-oriented (fixed-size nodes)
- built in a **bottom-up** fashion
- each node constrained by a sphere-like (ball) region
- *leaf node*: data objects + their distances from a *pivot* kept in the parent node
- internal node: pivot + radius covering the subtree, distance from the pivot the parent pivot
- *filtering*: covering radii + pre-computed distances

M-tree: Extensions

bulk-loading algorithm

- considers the trade-off: dynamic properties vs. performance
- M-tree building algorithm for a dataset given in advance
- results in more efficient M-tree

Slim-tree

- variant of M-tree (dynamic)
- reduces the *fat-factor* of the tree
- tree with smaller overlaps between particular tree regions

many variants and extensions – see Chapter 3

Similarity Hashing

- Multilevel structure
- One hash function (*ρ*-split function) per level
 Producing several buckets.
- The first level splits the whole data set.
- Next level partitions the exclusion zone of the previous level.
- The exclusion zone of the last level forms the exclusion bucket of the whole structure.

Similarity Hashing: Structure

4 separable buckets at the first level

2 separable buckets at the second level

exclusion bucket of the whole structure

Similarity Hashing: ρ -Split Function

- Produces several separable buckets.
 - Queries with radius up to ρ accesses one bucket at most.
 - □ If the exclusion zone is touched, next level must be sought.

Similarity Hashing: Features

- Bounded search costs for queries with radius $\leq \rho$.
 - One bucket per level at maximum
- Buckets of static files can be arranged in a way that I/O costs never exceed the sequential scan.
- Direct insertion of objects.
 - Specific bucket is addressed directly by computing hash functions.
- D-index is based on similarity hashing.
 - Uses excluded middle partitioning as the hash function.

Survey of Existing Approaches

- 1. ball partitioning methods
- 2. generalized hyper-plane partitioning approaches
- 3. exploiting pre-computed distances
- 4. hybrid indexing approaches
- 5. approximated techniques

Approximate Similarity Search

- Space transformation techniques
 - Introduced very briefly
- Reducing the subset of data to be examined
 - Most techniques originally proposed for vector spaces
 - Some can also be used in metric spaces
 - Some are specific for metric spaces
Exploiting Space Transformations

- Space transformation techniques transform the original data space into another suitable space.
 As an example consider dimensionality reduction.
- Space transformation techniques are typically distance preserving and satisfy the lower-bounding property:
 - Distances measured in the transformed space are smaller than those computed in the original space.

Exploiting Space Transformations (cont.)

- Exact similarity search algorithms:
 - Search in the transformed space
 - Filter out non-qualifying objects by re-measuring distances of retrieved objects in the original space.
- Approximate similarity search algorithms
 - Search in the transformed space
 - Do not perform the filtering step
 - False hits may occur

BBD Trees

- A Balanced Box-Decomposition (BBD) tree hierarchically divides the vector space with *d*dimensional non-overlapping boxes.
 - Leaf nodes of the tree contain a single object.
 - BBD trees are intended as a main memory data structure.

BBD Trees (cont.)

Exact k-NN(q) search is obtained as follows

- Find the leaf containing the query object
- Enumerate leaves in the increasing order of distance from q and maintain the k closest objects.
- Stop when the distance of next leaf is greater than $d(q,o_k)$.
- Approximate k-NN(q):
 - Stop when the distance of next leaf is greater than $d(q,o_k)/(1+\varepsilon)$.
- Distances from q to retrieved objects are at most 1+ɛ times larger than that of the k-th actual nearest neighbor of q.

BBD Trees: Exact 1-NN Search

Given 1-NN(q):

BBD Trees: Approximate 1-NN Search

- Given 1-NN(q):
 Radius d(q,o_{NN})/(1+e) is used instead!
- Regions 9 and 10 are not accessed:
 - They do not intersect the dashed circle of radius d(q,o_{NN})/(1+e).
- The exact NN is missed!

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

Angle Property Technique

- Observed (non-intuitive) properties in high dimensional vector spaces:
 - Objects tend to have the same distance.
 - Therefore they tend to be distributed on the surface of ball regions.
 - Parent and child regions have very close radii.
 - All regions intersect one each other.
 - The angle formed by a query point, the centre of a ball region, and any data object is close to 90 degrees.
 - The higher the dimensionality, the closer to 90 degrees.
- These properties can be exploited for approximate similarity search.

M. Batko: Similarity Search: The Metric Space Approach

Clustering for Indexing (Clindex)

- Performs approximate similarity search in vector spaces exploiting clustering techniques.
- The dataset is partitioned into clusters of similar objects:
 - Each cluster is represented by a separate file sequentially stored on the disk.

Clindex: Approximate Search

- Approximate similarity search:
 - Seeks for the cluster containing (or the cluster closest to) the query object.
 - Sorts the objects in the cluster according to the distance to the query.
- The search is approximate since qualifying objects can belong to other (non-accessed) clusters.
- More clusters can be accessed to improve precision.

Clindex: Clustering

- Clustering:
 - Each dimension of the *d*-dimensional vector space is divided into 2ⁿ segments: the result is (2ⁿ)^d cells in the data space.
 - Each cell is associated with the number of objects it contains.

Clindex: Clustering (cont.)

- Clustering starts accessing cells in the decreasing order of number of contained objects:
 - □ If a cell is adjacent to a cluster it is attached to the cluster.
 - If a cell is not adjacent to any cluster it is used as the seed for a new cluster.
 - If a cell is adjacent to more than one cluster, a heuristics is used to decide:
 - if the clusters should be merged or
 - which cluster the cell belongs to.

Clindex: Example

Vector Quantization index (VQ-Index)

- This approach is also based on clustering techniques to perform approximate similarity search.
- Specifically:
 - The dataset is grouped into (non-necessarily disjoint) subsets.
 - Lossy compression techniques are used to reduce the size of subsets.
 - A similarity query is processed by choosing a subset where to search.
 - The chosen compressed dataset is searched after decompressing it.

VQ-Index: Subset Generation

Subset generation:

- Query objects submitted by users are maintained in a history file.
- Queries in the history file are grouped into *m* clusters by using *k-means* algorithm.
- □ In correspondence of each cluster C_i a subset S_i of the dataset is generated as follows

$$S_i = \bigcup_{q \in C_i} kNN(q)$$

An object may belong to several subsets.

VQ-Index: Subset Generation (cont.)

- The overlap of subsets versus performance can be tuned by the choice of *m* and *k*
 - Large k implies more objects in a subset, so more objects are recalled.
 - Large values of *m* implies more subsets, so less objects to be accessed.

VQ-Index: Compression

Subset compression with vector quantisation:

- An encoder *Enc* function is used to associate every vector with an integer value taken from a finite set {1,...,n}.
- A decoder *Dec* function is used to associate every number from the set {1,...,n} with a representative vector.
- By using *Enc* and *Dec*, every vector is represented by a representative vector
 - Several vectors might be represented by the same representative.
- *Enc* is used to compress the content of S_i by applying it to every object in it:

$$S_i^{enc} = \left\{ Enc_i(x) \mid x \in S_i \right\}$$

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

VQ-Index: Approximate Search

- Approximate search:
 - Given a query *q*:
 - The cluster C_i closest to the query is first located.
 - An approximation of S_i is reconstructed, by applying the decoder function Dec_i .
 - The approximation of S_i is searched for qualifying objects.
 - Approximation occurs at two stages:
 - Qualifying objects may be included in other subsets, in addition to S_i.
 - The reconstructed approximation of S_i may contain vectors which differ from the original ones.

Buoy Indexing

- Dataset is partitioned in disjoint clusters.
- A cluster is represented by a representative element – the *buoy*.
- Clusters are bounded by a ball region having the buoy as center and the distance of the buoy to the farthest element of the cluster as the radius.
- This approach can be used in pure metric spaces.

Buoy Indexing: Similarity Search

- Given an exact k-NN query, clusters are accessed in the increasing distance to their buoys, until current result-set cannot be improved.
 - □ That is, until $d(q,o_k) + r_i < d(q,p_i)$
 - p_i is the buoy, r_i is the radius
- An approximate k-NN query can be processed by stopping when
 - either previous exact condition is true, or
 - □ a specified ratio *f* of clusters has been accessed.

Hierarchical Decomposition of Metric Spaces

- In addition to previous ones, there are other methods that were appositively designed to
 - Work on generic metric spaces
 - Organize large collections of data
- They exploit the hierarchical decomposition of metric spaces.

Hierarchical Decomposition of Metric Spaces (cont.)

- These will be discussed in details later on:
 - Relative error approximation
 - Relative error on distances of the approximate result is bounded.
 - Good fraction approximation
 - Retrieves k objects from a specified fraction of the objects closest to the query.

Hierarchical Decomposition of Metric Spaces (cont.)

- These will be discussed in details later on:
 - Small chance improvement approximation
 - Stops when chances of improving current result are low.
 - Proximity based approximation
 - Discards regions with small probability of containing qualifying objects.
 - PAC (Probably Approximately Correct) nearest neighbor search
 - Relative error on distances is bounded with a probability specified.